波音游戏平台下载-波音博彩广告网_百家乐园选_sz全讯网新2xb112 (中国)·官方网站

科學研究

打造高水平科技創新平臺和一流科研團隊!

MENU

學術活動

“數通古今,學貫中外”學術講座第六十五期預告【王鳳雨教授】

供稿: 曹鵬(數學與統計學院) 編輯: 數學學院 高冰 時間:2014-04-14

時間:4月15日(周二)下午3:30至4:30

地點:研究生樓103

報告人:王鳳雨教授:北京師范大學教授

Title: Integration by Parts Formula and Shift Harnack Inequality for Stochastic Equations

Abstract: A new coupling argument is introduced to establish Driver's integration by parts formulaand shift Harnack inequality. Unlike known coupling methods where two marginal processes withdifferent starting points are constructed to move together as soon as possible, for the new-type coupling the two marginal processes start from the same point but their difference is aimed to reach a fixed quantity at a given time. Besides the integration by parts formula, the new coupling method is also efficient to imply the shift Harnack inequality. Differently from known Harnack inequalities where the values of a reference function at different points are compared, in the shift Harnack inequality the reference function, rather than the initial point, is shifted. A number of applications of the integration by parts and shift Harnack inequality are presented. The general results are illustrated by some concrete models including the stochastic Hamiltonian system where the associated diffusion process can be highly degenerate, delayed SDEs, and semi-linear SPDEs.
 

鼠和猴做生意招财| 百家乐官网赢钱皇冠| 老钱庄百家乐官网的玩法技巧和规则| 百家乐官网扑克片礼服| 百家乐真人娱乐场| 爱玩棋牌下载| 赌百家乐官网到底能赌博赢| 乐宝百家乐娱乐城| 大发888娱乐| 亚洲百家乐官网的玩法技巧和规则| 真人百家乐试玩游戏| 六合彩结果| 百家乐官网的弱点| 网上百家乐| 百家乐官网赌缆注码运用| 百家乐的注码技巧| 百家乐分析软件| 24山灶位吉凶歌| bet365百家乐| 百家乐视频连连看| 百家乐官网网址是多少| 百家乐群sun811.com| 百家乐官网游戏机博彩正网| 蓝盾百家乐赌场娱乐网规则| 百家乐官网真人投注网站| 百家乐官网中B是什么| 女神百家乐娱乐城| 足球.百家乐官网投注网出租| 送彩金百家乐的玩法技巧和规则| 百家乐官网投资心得| 百家乐娱乐城代理| 百家乐官网真人大头贴| 老虎机怎么玩| 木星百家乐官网的玩法技巧和规则 | 大发888线上娱乐城| 百家乐官网必赢| 百家乐官网技巧阅读| 百家乐红桌布| 百家乐定位膽技巧| 百家乐官网公式软件| 大赢家比分|