波音游戏平台下载-波音博彩广告网_百家乐园选_sz全讯网新2xb112 (中国)·官方网站

科學研究

打造高水平科技創新平臺和一流科研團隊!

MENU

學術活動

9月2日物理學院“博約學術論壇”系列報告第39期

時間:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)
德州扑克单机版| 大发888开户即送58| 赌博百家乐趋势把握| 网络博彩群| 网上百家乐真的假的| 百家乐官网全程打庄| 百家乐谋略| 百家乐官网美食坊| 太阳城在线娱乐城| 百家乐官网赌场赌场网站| 大发888体育官网| 沙龙百家乐怎申请| 网上百家乐官网平台下载| 大发888登陆网页| 百家乐棋牌交友中心| 网上百家乐官网破战| 必博网址| 威尼斯人娱乐城海立方| 百家乐官网路珠价格| 大发888真坑阿| 斗地主百家乐的玩法技巧和规则| 百家乐视频美女| 百家乐官网网上最好网站| 六合彩图纸| 百家乐双龙出| 玩百家乐官网怎么能赢呢| 百家乐官网娱乐城返水| 百家乐如何打轮盘| 葡京百家乐玩法| 真钱百家乐官网大转轮| 百家乐官网心态研究| 皇冠现金| 大发888真人 新浪微群| 澳门百家乐鸿福厅| 百家乐官网黄金城游戏大厅 | 北京市| 百家乐下| 大家旺百家乐官网的玩法技巧和规则 | 百家乐官网园qq群| 线上龙虎| 永利高平台网址|