波音游戏平台下载-波音博彩广告网_百家乐园选_sz全讯网新2xb112 (中国)·官方网站

今天是
今日新發(fā)布通知公告1條 | 上傳規(guī)范

數(shù)學(xué)與統(tǒng)計(jì)學(xué)院"21世紀(jì)學(xué)科前沿"系列學(xué)術(shù)報(bào)告預(yù)告

Second-order Least Squares Method for High-dimensional Variable Selection

作者: ?? 來源:數(shù)學(xué)學(xué)院?? 發(fā)布日期:2015-06-01
報(bào)告題目:Second-order Least Squares Method for High-dimensional Variable Selection
報(bào)告時(shí)間:2015年6月2日下午3:00-4:00
報(bào)告地點(diǎn):良鄉(xiāng)1-208
報(bào)告人:Professor Liqun Wang, Department of Statistics, University of Manitoba, Canada
摘要:High-dimensional variable selection problems arise in many scientific fields, including genome and health science, economics and finance, astronomy and physics, signal processing and imaging. In statistics, various regularization methods have been studied based on either likelihood or least squares principles. In this talk, I will propose a regularized second order least squares method for variable selection in linear or nonlinear regression models. This method is based the first two conditional moments of the response variable given on the predictor variables. It is asymptotically more efficient than the ordinary least squares method when the regression error has nonzero third moment. Consequently the new method is more robust against asymmetric error distributions. I will demonstrate the effectiveness of this method through Monte Carlo simulation studies. A real data application will be presented to further illustrate the method.
游戏机百家乐的技巧| 百家乐操作技巧| 百家乐真人真钱| 百家乐官网开户导航| 百家乐官方游戏下载| 百家乐官网赌博出千| 博之道百家乐官网技巧| 上市百家乐.评论| 免费百家乐官网娱乐城| 立博百家乐的玩法技巧和规则| 百家乐官网赌场群| 大发888真钱电玩游戏| 怎样玩百家乐官网的玩法技巧和规则| 大发888官方 黄埔| 百家乐视频游戏网站| 百家乐官网巴厘岛平台| 金满堂百家乐的玩法技巧和规则| 百家乐官网澳门百家乐官网澳门赌场| 大发888网站| 大家旺百家乐娱乐城| 澳门百家乐官网博彩能做到不输吗| 天博百家乐官网娱乐城| 通州市| 百家乐那个平好| 做生意的好风水| 百家乐官网对子计算方法| 皇冠现金网是真的吗| 百家乐出庄几率| 安岳县| 百家乐庄牌闲牌| 玩百家乐去哪个平台好| 最新百家乐官网出千赌具| 优博最新网址| 大发888论坛| 澳门百家乐洗码提成查询| 足球比分| 叶氏百家乐平注技巧| 大都会百家乐官网的玩法技巧和规则 | 百家乐官网看大路| 镇远县| 大发888娱乐城帝豪|