波音游戏平台下载-波音博彩广告网_百家乐园选_sz全讯网新2xb112 (中国)·官方网站

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

足球投注现金网| 百家乐的玩法视频| 必博网| 百家乐官网最低压多少| 澳门百家乐官网心| 线上百家乐手机版| 大发888容易赢吗| 新2百家乐官网现金网百家乐官网现金网| 属鼠做生意办公桌摆貔貅好不好| 百家乐园试玩| 帝王百家乐官网全讯网2| 大发888假冒网站| 伯爵百家乐官网娱乐网| 阿城市| 红宝石百家乐的玩法技巧和规则 | 伯爵百家乐娱乐| 澳门网络博彩| 高级百家乐出千工具| 澳门百家乐官网怎么赢钱| 捕鱼棋牌游戏| 太阳城橙翠园| 百家乐官网庄闲必胜打| 澳门百家乐官网限红规则| 托克逊县| 大发体育场| 免费百家乐游戏下| 百家乐赢的秘籍在哪| 唐人街百家乐官网的玩法技巧和规则 | 百家乐官网是怎样算牌| 澳门百家乐官网如何算牌| 澳门足球博彩网站| 金城百家乐玩法平台| 百家乐官网博弈指数| 百家乐官网的必胜方法| 周宁县| 玉屏| 888真人娱乐城| bet365官网bet365gwylc| 大发888娱乐城rfgjdf888bg| 海港城百家乐的玩法技巧和规则| 申博百家乐有假吗|