波音游戏平台下载-波音博彩广告网_百家乐园选_sz全讯网新2xb112 (中国)·官方网站

今天是
今日新發布通知公告0條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

太阳城伞| 澳门百家乐有没有假| 澳门百家乐官网赢钱| 大发888娱乐场下载英皇国际| 半圆百家乐官网桌子| 大丰收百家乐的玩法技巧和规则| 百家乐官网游戏机说明书| 百家乐棋牌交| 大发888官方网站下载| 卓资县| 百家乐平注常赢法| 宝马会在线娱乐城| 百家乐英皇娱乐场开户注册| 盘锦市| 大发888线上娱乐城加盟合作| 圣保罗百家乐官网的玩法技巧和规则 | 百家乐套利| 百家乐官网赌机凤凰软件| 澳门百家乐门路| 濉溪县| 百家乐软件编辑原理| 外围赌球网站| 永利百家乐的玩法技巧和规则| 百家乐官网网上真钱娱乐平台| 瑞博国际娱乐| 百家乐下路教学| 百家乐官网娱乐平台网77scs| 澳门百家乐赌场娱乐网规则| 百家乐官网赌场技巧网| 威尼斯人娱乐城赌球| 澳门百家乐21点| 百家乐官网娱乐平台备用网址| 百家乐官网好的平台| 大发888官方备用| 国际百家乐规则| 太阳城百家乐官网公司| 六合彩今天开什么| 大发888官网授权网| 新东方百家乐的玩法技巧和规则 | 大连棋牌网| 百家乐平注法口诀技巧|