波音游戏平台下载-波音博彩广告网_百家乐园选_sz全讯网新2xb112 (中国)·官方网站

今天是
今日新發布通知公告1條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

來源:   發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

波胆网站| 真人棋牌游戏| 百家乐官网孖宝揽| 麻将百家乐官网筹码| 百家乐破解策略| 试玩百家乐游戏机| 百家乐筹码防伪| 赌场里的美少年| 阳曲县| 百家乐官网电投网址| 百家乐翻天qvod粤语| 百家乐法则| 德州扑克视频教学| 百家乐官网专打单跳投注法 | 揭阳市| 百家乐官网透视牌靴价格| 百家乐官网博弈之赢者理论坛| 聚众玩百家乐的玩法技巧和规则| 大发扑克下载| 百家乐官网园会员注册| 天天百家乐游戏| 联众百家乐的玩法技巧和规则| 拉斯维加斯娱乐| 百家乐官网统计工具| 真人百家乐官网源代码| 百家乐攻略投注法| 大发888上不去| 网上百家乐官网作弊法| 百家乐博弈之赢者理论坛| 太子娱乐城网址| 太阳城菲律宾官方网| 星港城百家乐官网娱乐城| 百家乐黄金城游戏大厅| 永利博线上娱乐城| 赌百家乐咋赢对方| 嘉鱼县| 澳门太阳城娱乐城| 天博百家乐官网的玩法技巧和规则 | 大发888注册的微博| 百家乐怎样做弊| 白沙|