波音游戏平台下载-波音博彩广告网_百家乐园选_sz全讯网新2xb112 (中国)·官方网站

今天是
今日新發布通知公告1條 | 上傳規范

9月2日物理學院“博約學術論壇”系列報告第39期

來源:   發布日期:2013-08-30
題 目:Localization in Topological Quantum Computation
報告人:Eric C. Rowell, Associate Professor
Department of Mathematics, Texas A & M University, Mail Stop 3368, College Station,TX77843
時  間:2013年9月2日(星期一)上午10:00
地  點:中心教學樓610
ABSTRACT I will give some perspectives on the problem of simulating topological quantum computers (TQC) on the quantum circuit model (QCM). Freedman, Kitaev and Wang found a "hidden" locality in TQC, but for practical applications we ask: When can the (braiding) gates of a TQC be completely localized? I will discuss some results and conjectures in this direction involving (generalized) Yang-Baxter operators.
Curriculum Vitae
Education
I. Ph.D. Mathematics University of California, San Diego, June 2003
II. B.A. Mathematics University of California, San Diego, June 1997
Research interests
Representation theory, Topological quantum computation, Categories with structure, Low-dimensional topology.
Recent papers
(1) C. Galindo; E. C. R., S.-M. Hong, Generalized and quasi-localization of braid group representations, Int. Math. Res. Not. 2013 no. 3, 693-731.
(2) P. Bruillard; E. C. R., Modular categories, integrality and Egyptian fractions, Proc. Amer. Math. Soc. 140 (2012), 1141-1150.
(3) E. C. R.; Z. Wang, Localization of unitary braid representations, Comm. Math. Phys. 311 (2012) no. 3, 595-615.
(4) D. Naidu; E. C. R., A finiteness property for braided fusion categories, Algebr. Represent. Theory. 15 (2011) no. 5, 837-855.
(5) E. C. R., A quaternionic braid representation (after Goldschmidt and Jones), Quantum Topol. 2 (2011), 173-182.
(6) E. C. R., Braid representations from quantum groups of exceptional Lie type, Rev. Un. Mat. Argentina 51 (2010) no. 1, 165-175.
(7) S.-M. Hong; E. C. R., On the classification of the Grothendieck rings of non-self-dual modular categories, J. Algebra 324 (2010) no. 5, 1000-1015.
(8) I. Tuba; E. C. R., Finite linear quotients of B3 of low dimension, J. Knot Theory Ramifications 19 (2010) no. 5, 587-600.
(9) E. C. R.; Y. Zhang; Y.-S. Wu; M.-L. Ge, Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates, Quantum Inf. Comput. 10 (2010) no. 7-8, 0685-0702.

聯系方式:物理學院辦公室(68913163)
網    址:
http://physics.bit.edu.cn/

(審核:姜艷)

赌百家乐官网庄闲能赢| 在线棋牌游戏| 百家乐棋牌游戏皇冠网| 大发888真人娱乐场游戏平台| 五星百家乐官网的玩法技巧和规则 | 久久棋牌评测| 风水24山向哪些不能兼| 贵族娱乐城| 真人百家乐皇冠网| 瓮安县| 累积式百家乐的玩法技巧和规则| 网上百家乐官网是假| 百家乐扑克牌手机壳| 9人百家乐官网桌布| 大发888注册的微博| 百家乐赌经| 百家乐官网游戏方法| 金榜娱乐城| 百家乐官网网站开户| 大世界百家乐官网娱乐平台| 大发888娱乐城都有啥扑克牌游戏| 钱柜百家乐官网的玩法技巧和规则 | 六合彩报纸| 百家乐视频游戏中心| 百家乐官网的路图片| 宝马会娱乐城网址| 澳门百家乐娱乐网| 百家乐官网切入法| 九寨沟县| 大发888娱乐场是真是假| 水晶百家乐筹码| 百家乐官网娱乐平台官网网 | 打百家乐纯打庄的方法| 百家乐官网备用网址| 立博博彩| 免水百家乐的玩法技巧和规则| 适合做生意的开运方法| 真人百家乐官网蓝盾娱乐场| 尖扎县| 大发888官网注册| 金都百家乐的玩法技巧和规则 |